Cyclic ADP Ribose-Dependent Ca2+ Release by Group I Metabotropic Glutamate Receptors in Acutely Dissociated Rat Hippocampal Neurons

نویسندگان

  • Jong-Woo Sohn
  • Weon-Jin Yu
  • Doyun Lee
  • Hee-Sup Shin
  • Suk-Ho Lee
  • Won-Kyung Ho
چکیده

Group I metabotropic glutamate receptors (group I mGluRs; mGluR1 and mGluR5) exert diverse effects on neuronal and synaptic functions, many of which are regulated by intracellular Ca(2+). In this study, we characterized the cellular mechanisms underlying Ca(2+) mobilization induced by (RS)-3,5-dihydroxyphenylglycine (DHPG; a specific group I mGluR agonist) in the somata of acutely dissociated rat hippocampal neurons using microfluorometry. We found that DHPG activates mGluR5 to mobilize intracellular Ca(2+) from ryanodine-sensitive stores via cyclic adenosine diphosphate ribose (cADPR), while the PLC/IP(3) signaling pathway was not involved in Ca(2+) mobilization. The application of glutamate, which depolarized the membrane potential by 28.5±4.9 mV (n = 4), led to transient Ca(2+) mobilization by mGluR5 and Ca(2+) influx through L-type Ca(2+) channels. We found no evidence that mGluR5-mediated Ca(2+) release and Ca(2+) influx through L-type Ca(2+) channels interact to generate supralinear Ca(2+) transients. Our study provides novel insights into the mechanisms of intracellular Ca(2+) mobilization by mGluR5 in the somata of hippocampal neurons.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

(S)- 3,5-Dihydroxyphenylglycine )an agonist for group I metabotropic glutamate receptors( induced synaptic potentiation at excitatory synapses on fast spiking GABAergic cells in visual cortex

Introduction: (S)- 3,5-Dihydroxyphenylglycine (DHPG) is an agonist for group I metabotropic glutamate receptors. DHPG-induced synaptic depression of excitatory synapses on hippocampal pyramidal neurons is well known model for synaptic plasticity studies. The aim of the present study was to examine the effects of DHPG superfusion on excitatory synapses on pyramidal and fast-spiking GABAergic cel...

متن کامل

Two intracellular pathways mediate metabotropic glutamate receptor-induced Ca2+ mobilization in dopamine neurons.

Activation of metabotropic glutamate receptors (mGluRs) causes membrane hyperpolarization in midbrain dopamine neurons. This hyperpolarization results from the opening of Ca(2+)-sensitive K(+) channels, which is mediated by the release of Ca(2+) from intracellular stores. Neurotransmitter-induced mobilization of Ca(2+) is generally ascribed to the action of inositol 1,4,5-triphosphate (IP(3)) i...

متن کامل

Activation of Ca2+-dependent currents in dorsal root ganglion neurons by metabotropic glutamate receptors and cyclic ADP-ribose precursors.

Cultured dorsal root ganglion neurons were voltage clamped at -90 mV to study the effects of intracellular application of nicotinamide adenine dinucleotide (betaNAD+), intracellular flash photolysis of caged 3',5'-cyclic guanosine monophosphate (cGMP), and metabotropic glutamate receptor activation. The activation of metabotropic glutamate receptors evoked inward Ca2+-dependent currents in most...

متن کامل

Hippocampal mossy fiber activity evokes Ca2+ release in CA3 pyramidal neurons via a metabotropic glutamate receptor pathway.

Mossy fiber activity can evoke Ca2+ release from internal stores in CA3 neurons, but the physiological conditions under which this occurs and the mechanisms underlying the release are not understood. Using rat hippocampal slices we report here that short trains of mossy fiber stimulation activate group I metabotropic glutamate receptors (mGluRs) on CA3 pyramidal neurons and elicit waves of Ca2+...

متن کامل

Selective inhibition of spontaneous but not Ca2+ -dependent release machinery by presynaptic group II mGluRs in rat cerebellar slices.

Two main forms of neurotransmitter release are known: action potential-evoked and spontaneous release. Action potential-evoked release depends on Ca2+ entry through voltage-gated Ca2+ channels, whereas spontaneous release is thought to be Ca2+ -independent. Generally, spontaneous and action potential-evoked release are believed to use the same release machinery to release neurotransmitter. This...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2011